
Ghavamipour et al.
BMC Medical Informatics and Decision Making (2022) 22:89
https://doi.org/10.1186/s12911-022-01811-y

RESEARCH

Privacy‑preserving logistic regression
with secret sharing
Ali Reza Ghavamipour1*, Fatih Turkmen1 and Xiaoqian Jiang2 

Abstract 

Background:  Logistic regression (LR) is a widely used classification method for modeling binary outcomes in many
medical data classification tasks. Researchers that collect and combine datasets from various data custodians and
jurisdictions can greatly benefit from the increased statistical power to support their analysis goals. However, combin-
ing data from different sources creates serious privacy concerns that need to be addressed.

Methods:  In this paper, we propose two privacy-preserving protocols for performing logistic regression with the
Newton–Raphson method in the estimation of parameters. Our proposals are based on secure Multi-Party Computa-
tion (MPC) and tailored to the honest majority and dishonest majority security settings.

Results:  The proposed protocols are evaluated against both synthetic and real-world datasets in terms of efficiency
and accuracy, and a comparison is made with the ordinary logistic regression. The experimental results demonstrate
that the proposed protocols are highly efficient and accurate.

Conclusions:  Our work introduces two iterative algorithms to enable the distributed training of a logistic regres-
sion model in a privacy-preserving manner. The implementation results show that our algorithms can handle large
datasets from multiple sources.

Keywords:  Logistic regression, Secret sharing, Multi-party computation, Privacy-preserving, Newton–Raphson

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Patient data (i.e., medical records and genomes) are being
collected at a rapid pace around the world, and the vol-
ume of data is exponentially growing. In order to boost
the power of statistical analysis and the robustness of
machine learning models over these data sets, more
samples are needed. One way the hospitals and research
institutions can tackle the scarcity of data is to collabo-
rate with each other by sharing data and findings in a
central location. The key advantages of data sharing and/
or collaborative data processing include more accurate
disease identification and diagnosis, risk calculation for a
certain disease, and therapeutic discovery.

Various data analytic techniques can be employed
to infer information from a given datasets. The logistic
regression model [1], one of the most popular prediction
models, is now widely used in medical research. Logis-
tic regression estimates a particular event’s probability
based on previously observed data. More specifically, the
value of a binary variable is predicted based on several
independent variables. For example, a logistic regres-
sion can be trained for the identification of a malignant
breast cancers based on tumor size, patient age, blood
type, and genetic inheritance [2]. Statistical models need
a sufficiently large sample size to achieve a desired level
of performance in data analysis and to make more accu-
rate predictions [3]. It is thus beneficial to combine and
compare data from different sources to ensure generalis-
ability in data representation. However, collecting data
from multiple sources often raises concerns about pri-
vacy. Due to institutional policies and legal restrictions,

Open Access

*Correspondence: a.r.ghavamipour@rug.nl
1 University of Groningen, Nijenborgh 9, Groningen, Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-022-01811-y&domain=pdf

Page 2 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89

hospitals and medical centers are often reluctant to share
their sensitive data (i.e., especially patient-level informa-
tion) with other institutions. Therefore, it is essential to
employ privacy-preserving solutions when making statis-
tical inferences over shared data [4].

In this paper, our particular focus is on enabling logistic
regression between multiple data holders in a privacy-
preserving manner. We assume that the data are horizon-
tally partitioned, which indicates that the data holders
have precisely the same variables but different values
for those variables. Moreover, we assume that Newton-
Raphson method is used to estimate model parameters.
Based on these assumptions, we propose two methods to
train a logistic regression model under different security
assumptions. Thus, the main contributions of this paper
include:

•	 A novel privacy-preserving algorithm for computing
logistic regression models that is highly accurate and
has an acceptable efficiency.

•	 A second algorithm that is highly efficient but less
accurate due to the use of multiple approximations.

•	 Implementation of the proposed algorithms in both
honest and dishonest majority security settings.

•	 Evaluation of the proposed protocols on various real-
world and generated synthetic datasets.

Related work
The literature contains a several research works that pre-
sent privacy-preserving methods for the computation of
logistic regression across multiple data holders. In gen-
eral, the common approach has been the implementation
of various steps in logistic regression by using primi-
tives from cryptographic techniques such as multi-party
computation, homomorphic encryption, and differential
privacy. However, due to the complexity of the underly-
ing secure computation primitives and the way they are
employed, the existing methods suffer from multiple
drawbacks regarding scalability and accuracy.

The Grid Binary LOgistic REgression (GLORE) model
was developed by Wu et al. [5] to support privacy-
preserving logistic regression in a distributed setting.
GLORE estimates global model parameters for hori-
zontally partitioned data without necessarily sharing
patients. Instead of directly sharing sensitive data with
other institutes, the decomposable intermediary results
with significantly less sensitive information are trans-
ferred to build a global training protocol for logistic
regression. However, in their proposed methods, sensi-
tive data could be leaked due to disclosure of the infor-
mation matrix and summary statistics.

Shi et al. [6] proposed a secure multi-party computa-
tion framework for grid logistic regression (SMAC-
GLORE), which protects the patient data’s confidentiality
and privacy. SMAC-GLORE preserves the intermedi-
ate results with the help of garbled circuits during itera-
tive model learning. Various approaches, such as secure
matrix multiplication and addition, and fixed-Hessian
methods, have been employed to estimate the maximum
likelihood function. Nevertheless, due to the garbled cir-
cuit constraints, SMAC-GLORE cannot handle a large
number of records and features. Furthermore, it uses the
Taylor series approximation approach to evaluate the
sigmoid function, which causes accuracy loss in the final
result.

Xie et al. [7] developed PrivLogit, which performs dis-
tributed privacy-preserving logistic regression and uses
Yao’s garbled circuits and Paillier encryption. PrivLogit
needs the data owners to perform computations on their
data before encryption to compute parts of a logistic
regression matrix resulting with an expensive computa-
tional cost to calculate the intermediate results.

SecureML [8] was one of the fastest protocols for pri-
vacy-preserving logistic regression models training based
on secure MPC. The SecureML protocol is divided into
an offline (to generate and distributing multiplication tri-
ples) and an online phase. SecureML employs a multipli-
cation protocol based on a straightforward and efficient
security setting introduced by Beaver [9]. To compute the
activation functions, they also introduced a new compar-
ison-based activation function that converges to 0 and 1.
Unlike our work that employs the Newton Raphson opti-
mization method, SecureML focuses on the mini-batch
gradient descent.

Cock et al. [10] proposed an information-theoretically
privacy-preserving model training protocol that employs
secret sharing-based building blocks such as distributed
multiplication, distributed comparison, bit-decompo-
sition of shares. Similar to SecureML, their proposed
protocol requires multiplication triples distributed dur-
ing a setup phase with/or without a trusted authority.
Unlike SecureML, which is secure in the computational
context, they engage in the information-theoretic model
using secret sharing-based MPC and employ commod-
ity-based cryptography [9] to decrease the number of
communications.

In addition to MPC-based solutions, two popular
methods have been considered. The first one is homo-
morphic encryption [11], which allows for computation
to be performed over encrypted data.This method has
been applied to privacy-preserving logistic regression in
various works [12–18]. In most of these mentioned
works, polynomial approximations need to be made
to evaluate non-linear functions in machine-learning

Page 3 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89 	

algorithms. The second method is differential privacy,
a universally accepted mathematical structure for pro-
tecting data privacy. The main application of differential
privacy in machine learning is when the model is pub-
licly published after training in a way that personal data
points cannot be distinguished from the released model
[19–22].

Preliminaries
In this section, we first present our system models along
with the security assumptions. We then provide an over-
view of the secret sharing protocols used in our work and
briefly present logistic regression.
System model
Inline with the literature [8, 23], we consider a set of
input parties that aim to train a logistic regression model
on their sensitive data and assume that the data are hori-
zontally partitioned among the input parties, i.e. each
independent database contains only a sub-population.
The input parties send secret shares of their inputs to a
set of computation parties in a setup phase that is per-
formed only once.

With regards to security, we consider three concerns
when training a privacy-preserving logistic regression
model. The first concern is the risk of colluding two or
more parties involved in the protocols against other par-
ties. The collusion might happen when two or more com-
putation parties try to reconstruct the original data in the
protocol by pooling their views. A computation party’s
view comprises its private input, generated random data,
intermediate values, and a list of all messages received
during the execution of the protocol. For instance, a mali-
cious computing party may try to modify the messages
to break the privacy of the input parties. To do this, the
computing party needs information from other parties to
see how its changes affect the final output. Therefore, it
requires to collude with the other computing parties and
collect all the computed shared values to achieve its goal.
Notably, in this work, our goal is not to design protocols
that prevent collusion but to define non-colluding parties
for the security guarantee of the protocol so that multi-
ple parties can not combine their views in order to learn
extra information.

The second issue is the independence of involved par-
ties in these protocols. If an adversary controls one party,
the other parties should behave honestly. We assume
that each of the computation and input parties are
independent.

Lastly, one or more computation parties may get cor-
rupted. We assume that the corrupted party follows the
protocol but may try to learn as much as possible from
the messages they receive from other parties and tries to
compute the inputs and outputs of honest parties based

on all the available information. The corrupted parties
are also commonly called honest-but-curious. The num-
ber of corrupted computation parties tolerated depends
on selected security assumptions.

More specifically, we consider the security of our sys-
tem under two settings:

•	 Honest (non-corrupted) majority In this setting, the
adversary may actively corrupt t computation parties,
s.t. t < n/2 . We address this case in a three-party set-
ting where, at most, one party can be corrupted.

•	 Dishonest (corrupted) majority In the second case,
the corrupted parties could be the majority, that is
the number of corrupted parties could be more than
or equal to half of the participants (i.e. t ≥ n/2 ). To
achieve the highest efficiency, we address this case in
the two-party setting where only one of the computa-
tion parties can be corrupted.

This paper propose logistic regression training protocols
for both of these security settings.

Secret sharing
Secret sharing is a set of techniques that allows a secret
value x to be distributed among n participants as
x1, . . . , xn so that each party Pi receives a random share
xi (mod p) of the secret over some prime p.1 In secret
sharing-based secure computation schemes, a number
of sensitive data holders (input parties) can secretly share
their data among other participants. In this paper, we use
the n-out-of-n additive secret sharing scheme. In this
scheme, an integer u is additively shared (meaning the
shares sum to u) between n participants. To do this, each
input party picks n− 1 randomly generated values and
sends them to all other participants. The last party is pro-
vided by the secret u minus the sum of those randomly
generated values. The original value can be reconstructed
by computing the summation of all of the shares.

In what follows, we will use [[x]] to denote secret shares
that reconstruct to x. A share [[x]] is an n-tuple with each
computing party holding precisely one element of the
tuple and [[x]]i denotes the share held by the ith party.

Addition and multiplication
Various operations can be performed on secret shared
data through the tailored protocols. In accordance with
the security models discussed in the preceding “System
model” section, in our work, we employ addition and
multiplication as the key operations. We closely follow

1  We drop the modular notation for the sake of conciseness in the rest of the
paper.

Page 4 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89

the notation used in [24] to present the protocols to per-
form these operations.

The addition of two secrets can be performed locally as
follows: [[x]] + [[y]] = ([[x]]1 + [[y]]1, [[x]]2 + [[y]]2, . . . , [[x]]n + [[y]]n) .
The multiplication of the additively secret shared values,
on the other hand, requires network communication and
calls for a different treatment for each security setting we
consider.

In the honest majority setting, we use the multiplica-
tion protocol proposed by Bogdanov et al. [25] (classical
approach) and refined in [24]. In this protocol, the multi-
plication of two additively secret shared values x and y, is
computed in the three-party setting as follows:

where p(i) indicates the index of the previous computa-
tion party. Eq. 1 implies that each computation party
requires its adjacent computation party’s input share and
if i = 1 then the previous party is 3, thus forming a loop.
Therefore, each computation party transfers the shares of
inputs x and y it received earlier to the next party to com-
pute the following equation:

where [[w]]i is a share of the multiplication result calcu-
lated by the computation party i. However, as also noted
by Bogdanov et al. [25], sending the input share to the
nearby computation party may give an advantage to
an adversary who may have observed earlier shares. To
address this issue, they introduced a re-sharing protocol
to construct a new share from an input share for each
computation party at the beginning and end of the multi-
plication operation.

In the dishonest majority setting, we use the Bea-
ver triples technique [26] to perform the multiplication
operation. This method requires the presence of a trusted
initializer which pre-distributes the shares ( [[a]] , [[b]] , [[c]] )
of multiplication triple (a, b, c) between the computation
parties in such a way that a and b are randomly generated
and c = a.b . Once the shares of the input and the triple
are received, each computation party computes [[d]] =
[[x]] − [[a]] and [[e]] = [[y]] − [[b]] locally and then reveal [[d]]
and [[e]] to other parties. By using these shares, the par-
ties can reconstruct d and e. Since a and b are randomly
generated, revealing the shares of d and e does not com-
promise the security of the protocol. Given these values,
each party locally computes:

(1)

(x1 + x2 + x3)(y1 + y2 + y3) = (x1y1 + x1y3 + x3y1)

+(x2y2 + x2y1 + x1y2)+ (x3y3 + x3y2 + x2y3)

=

3
∑

i=1

xiyi + xiyp(i) + xp(i)yi

[[w]]i = [[x]]i.[[y]]i + [[x]]p(i).[[y]]i + [[x]]i.[[y]]p(i)

where [[w]]i is a share of the result of the multiplication
calculated by the computation party i.

It is important to note that after distributing the shares
of the multiplication triple, the trusted initializer will not
be involved in the rest of the protocol.

Matrix inversion
As we will explain in “Methods” section , matrix inver-
sion operation is required in order to implement logistic
regression. The secret sharing based protocols discussed
in the previous section support only addition and mul-
tiplication operations, and the accurate (as opposed to
approximate) implementation of matrix inversion with
these protocols incurs a significant computational cost.
To address this issue, we use the approximation method
introduced by Nardi et al. [27]. Nardi’s method converts
the matrix inversion problem into an iterative procedure
of matrix multiplication and addition. In this method, we
look for a matrix B that is equal to the inversion of the
matrix X. The main idea is to define a function f(x) for
which matrix X represents its root. More formally:

To find the root of the function f, Nardi suggested the
use of the Newton–Raphson method [28]. Thus, a stable
numerical iterative approximation takes the following
form:

where Ms = BsA , B0 and M0 are the initial guesses, I is an
identity matrix, and c is a constant. After convergence, Bs
contains an approximation of matrix X’s inversion.

Logistic regression
Logistic regression is a statistical technique that is com-
monly used in machine learning tasks. It predicts the
probability whether a dependent variable belongs to a
particular class. This paper will consider the binary clas-
sification, where there are only two possible classes. The
logistic model is intended to describe a probability, which
is always a number between 0 and 1.

Let D = {(X , y)} = {(x1, y1), (x2, y2) , . . . , (xn, yn)} be a
training dataset of n records, where xi is the m-dimen-
sional feature vector of each record and the yi is a vector
of labeled binary outcomes. The logistic regression model
is given by:

[[w]]i = [[c]]i + e.[[b]]i + d.[[a]]i + e.d

f (x) = X−1 − B

(2)
Bs+1 = 2Bs − BsMs B0 = c−1

I

Ms+1 = 2Ms −M2
s M0 = c−1X

Page 5 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89 	

where β = (β1, . . . ,βm) is the m-dimensional regres-
sion coefficients vector and βT is its transpose, yi is the
observation of binary responses and xi is the feature vec-
tor belonging to the record i. The purpose of using this
method is to obtain the parameter vector β that maxi-
mizes the log-likelihood function:

By determining the parameters β , the classifier can pre-
dict the class label of new feature vectors.

Methods
Estimating model coefficients
Since logistic regression cannot be found in a closed form,
model estimation is often accomplished by an iterative
optimization over the log-likelihood function. As mention
in “Matrix inversion” section, Newton–Raphson is a popu-
lar numerical iterative method that eventually approaches
the optimal values of the model parameters. For each itera-
tion, the coefficient estimates are updated by:

where ∇ and H correspond to the gradient and Hessian of
the log-likelihood function respectively. They are evalu-
ated with the old estimate of the β to determine the cur-
rent estimate and can be computed as follows:

where W is a diagonal matrix with elements defined as
ai,i = π(1− π) and π is the vector of probabilities.

Gradient
As stated in (6), to compute the gradient, we first need
to compute the Sigmoid function ( π ). The Sigmoid func-
tion is a mathematical function that has a characteris-
tic S-shaped curve. This function has the property that
maps the entire number line into a small range, such as
between 0 and 1.

(3)P(yi = 1|xi;β) =
1

1− e−βT xi

(4)l(β) = −

n
∑

i=1

log
(

1+ e−βT xi
)

(5)βnew = βold −H
−1(βold)∇(βold)

(6)∇(β) =
∂l(β)

∂β
= X

T(y− π)

(7)H(β) =
∂2f

∂β∂βT
= X

T
WX

(8)π(z) =
1

1+ e−z
= (1+ e−z)−1

During the computation of the Sigmoid function, we
consider both accurate and approximate cases which are
summarized below.

Accurate Computation The main challenges of comput-
ing the exact value of the Sigmoid function are performing
exponentiation and matrix inversion operations. To per-
form the matrix inversion operation, we use the solutions
discussed in “Matrix inversion” section. However, perform-
ing exponentiation by the considered secret sharing tech-
niques is quite challenging.

After each computation party receives the other
computation parties’ share of e[[zi]] , they computes
([[e[[z1]]]]1 ∗ [[e

[[z2]]]]2 ∗ · · · ∗ [[e
[[zi]]]]n ), which is equal to

([[e[[z1]]+[[z2]]+···+[[zi]]]]) . Therefore, each computation party
has a valid share of [[e[[z]]]] , and uses the MPC-based addi-
tion and matrix inversion operations to compute the exact
value of the Sigmoid function.

Least Squares Approximation The method to compute the
exact value of the Sigmoid function might have scalability
issues due to the large number of multiplications. In order to
improve the performance, we use the least-squares approxi-
mation of the sigmoid function over the interval [-8,8]
introduced by Kim et al. [15]. We adapt this approximation
method and consider the degree 3, 5, and 7 least-squares
polynomials:

The degree 3 least-squares approximation requires fewer
multiplications, while the degree 7 polynomial has more
immeasurable precision.

Hessian
The Hessian matrix H denotes the second partial derivatives
of the maximum likelihood function l(β) . In every iteration,
the Hessian matrix has to be updated by the newest β , and
its inversion has to be computed. To evaluate the Hessian
matrix, we can consider two different methods. First, we
can compute the exact value of the Hessian matrix by per-
forming the required MPC-based multiplication. However,
the exact evaluation of the Hessian matrix is considerably
expensive in computational terms. To solve this issue, we
approximate the Hessian matrix with a fixed matrix instead
of updating it in every iteration. More specifically, we can
replace the fixed Hessian matrix with its approximation H̃
(Eq. 9) that only needs to be computed and inverted.























g3(x) = 0.5+ 1.20096.(x/8)− 0.81562.(x/8)3

g5(x) = 0.5+ 1.53048.(x/8)− 2.3533056.(x/8)3

+1.3511295.(x/8)5

g7(x) = 0.5+ 1.73496.(x/8)− 4.19407.(x/8)3

+5.43402.(x/8)5 − 2.50739.(x/8)7

(9)H̃ =
−1

4
XXT

Page 6 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89

Böhning [29] proved that if H̃−H is positive definite and
H̃ ≤ H then the convergence of this method is guaranteed.
Also, because H̃ does not depend on β , we can pre-compute
the Hessian and its inverse one time and use it in all iterations.

Privacy‑preserving logistic regression training
This work assumes that the result party desires to com-
pute the logistic regression model over collected data by
different data owners. Each data owner computes multi-
ple shares (based on the number of computation parties)
of its sensitive data and sends them separately to each
computation party. Note that each computation party
receives an equal number of dependent Xi and independ-
ent yi variables. Each computation party should append
the received shares and their corresponding dependent
variables in the correct order. Finally, computation parties
send their computed shares of logistic regression coeffi-
cient to the result party, and the result party, then, simply
sum these shares together to compute the final result.

We now present our privacy-preserving logistic regres-
sion training algorithms that employ the previously men-
tioned approaches. These algorithms summarize the
crucial steps in the proposed protocols for both honest
and dishonest majority security assumptions. In our pro-
posed algorithms, each data owner provides a share of
data for the computation parties as input. The only out-
put of the algorithm is the computed model coefficients
β . Notably, we will not employ a convergence check after
each iteration to prevent unnecessarily revealing infor-
mation about the input. niter specifies the upper bound of
the number of iterations needed for convergence.

In Algorithm 1, we propose a very accurate privacy-
preserving logistic regression model training protocol. In
this algorithm, we only employ highly accurate approxi-
mations, such as matrix inversion and fixed Hessian,
which have a negligible effect on the computation out-
put’s accuracy. Moreover, instead of approximating the
Sigmoid function, we use our approach introduced in
“Gradient” section to compute the exact value of it (lines
8-12).

The primary purpose of proposing Algorithm 2 is to
achieve a highly efficient privacy-preserving logistic
regression model training protocol. Various approxi-
mation approaches such as fixed Hessian matrix, least-
square approximation for the Sigmoid function, and
matrix inversion algorithm are employed to obtain our
goal. This logistic regression training algorithm demon-
strates how the introduced approximation approaches
can be combined efficiently to compute the logistic
regression coefficient in a privacy-preserving manner.

Results
In this section, we first describe computational efficiency
evaluations in terms of CPU time and memory consump-
tion for the proposed algorithms over a real-world data-
set and generated synthetic data. We finally describe the
accuracy evaluations of these protocols and theoretically
discuss the communication cost.

Implementation details
We implemented our proposed algorithms with both
of the introduced security settings in “Implementation
details” section using Python programming language.
Algorithm 1 is implemented using Beaver triple-based
MPC (Accurate BMPC) and classical MPC (Accu-
rate CMPC). Also, the Beaver triple-based version of

Page 7 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89 	

Algorithm 2 is called BMPC, and the classical-based
MPC implementation of this algorithm is called CMPC.
Moreover, to have a decent comparison, the ordinary
logistic regression (OLR), which does not use MPC, is
implemented.

Experiments were performed on an ARM-based M1
processor with 16GB memory, running a macOS opera-
tion system. Also, to eliminate the impact of network
latency, we simulated the computing nodes on a single
computer with multiple threads (each node is considered
as a thread). Each experiment was performed at least ten
times and its output’s mean was reported. During the
validation, we employed both synthetic and real-world
datasets.

We report the evaluation results concerning computa-
tional efficiency in terms of CPU time and memory con-
sumption and result accuracy. For a fair comparison on
the efficiency, we used four real-world data sets: Pima
Indians Diabetes Dataset (PIMA) [30], Low Birth Weight
Study (LBW) [31], Prostate Cancer Study (PCS) [32], and
Umaru Impact Study datasets (UIS)[33]. All datasets have
a single binary outcome variable. To satisfy the demand
for large-scale studies between multiple research institu-
tions with a large number of records, we also examined
our protocols with synthetic data sets of varying sizes.
The synthetic data is composed of up to 1 million records
spanning up to 3000 features representing most real-
world use cases.

Efficiency
To compare our protocols’ efficiency with an ordinary
logistic regression, first, we measured the CPU time of
our protocol when the number of features is constant
(i.e., 250), and the number of records increases. We, then,
calculated the CPU time of the protocols when the num-
ber of records is fixed (i.e., 7000), and the number of fea-
tures increases.

The CPU time of the proposed protocols is heavily
influenced by the number of records and training set fea-
tures. Figures 1 and 2 illustrate the CPU time of imple-
mented protocols based on algorithm 1 (Accurate BMPC
and Accurate CMPC). As is illustrated in Fig. 1, Accurate
BMPC has the best results when the number of records
increases. This protocol computes a logistic regression
model over a train set of 50000 records and 500 features
in less than 15 s which is 20 s faster than Accurate CMPC
protocol and 70 s faster than OLR. Nevertheless, increas-
ing the number of features has a higher impact than OLR.
As is shown in Fig. 2, using the OLR protocol, a logis-
tic regression model can be trained over a training set
with 7000 records and 3000 features in around 90 s. This
model, however, takes about 3 minutes and 5 minutes to

compute using the Accurate BMPC protocol and Accu-
rate CMPC protocol, respectively.

Figures 3 and 4 illustrate the CPU time of the protocols
which are implemented based on algorithm 2 (BMP and
CMPC). As shown in Fig. 3, both protocols have a bet-
ter performance than OLR when the number of records
increases and the number of features is fixed. Also, BMPC
has a considerably better CPU time in comparison with
CMPC and OLR. However, as is shown in Fig. 4, increas-
ing the number of features has slightly different results.
Raising the number of features decreases the efficiency
of all three protocols. CMPC receives the highest impact
from rising the number of features, but BMPC still has an
acceptable efficiency level. For example, BMPC can train
a model with 7000 records and 2500 features in less than

Fig. 1  Efficiency comparison for increasing number of records using
accurate algorithm 1

Fig. 2  Efficiency comparison for increasing number of features using
accurate algorithm 1

Page 8 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89

one minute, 7 s higher than OLR, and four times better
than CMPC. Therefore, we can conclude that CMPC is
not the right choice when we have a dataset with a con-
siderable number of features.

Besides, to measure the efficiency in terms of memory
consumption, a python module named “memory_pro-
filer” [34] has been utilized. Table 1 indicates memory
consumption for the different introduced protocols and
ordinary logistic regression. All implemented protocols
in both security settings consume remarkably less mem-
ory during the training process. As is described in the
Table 1, to train a logistic regression model over a dataset
with 50,000 records and 200 features, the OLR protocol
requires about 30 GB of memory. However, the BMPC
and Accurate BMPC have about 8 GB of memory to train
this model. Also, the CMPC and Accurate CMPC proto-
cols have a better consumption rate than BMPC, and less
than 5 GB of memory is needed to train such a model.

Accuracy
One of the primary subjects that we considered in exam-
ining our protocols was accuracy. We measured accuracy
based on the estimated model parameters’ precision dur-
ing the training phase over the Low Birth Weight Study
dataset. To do this, we compared the obtained vector
of coefficient β from our protocols with the ones esti-
mated using the OLR protocol. As Table 2 presents, the
Accurate BMPC and Accurate CMPC protocols’ model
parameters are almost the same as the model param-
eters estimated using OLR protocol. Moreover, the
model parameters estimated from protocols based on
the algorithm 2 (BMPC and CMPC), which employ vari-
ous approximations, have an acceptable level of accuracy
compared to the model parameters estimated using OLR
protocol.

Regarding the introduction of several approximation
schemes in BMPC and CMPC protocols, as well as gain-
ing a better understanding of the accuracy of these pro-
tocols, we compared the prediction accuracy achieved by
these protocols with that obtained from the OLR proto-
col. To do this, we calculated the percentage (%) of the
correct predictions of estimated models produced on
four different datasets (25% of training samples were
assigned to the test set) in various settings based on the
degree of Sigmoid function approximation. All the accu-
racy measurement results are summarized in Table 3.
This table presents the average prediction accuracy per-
centage when threshold = 0.5 and the AUC (Area Under
the Curve), which estimates a binary classifier’s quality.
Moreover, based on the information provided in Table 2,
varying the Sigmoid function approximation degrees
used in BMPC and CMPC protocols do not significantly
affect the estimated model’s accuracy over the chosen
datasets.

Communication cost
In multi-party computation protocols, communication
cost depends on multiple elements, such as the number
of computations parties, iterations, operations, and secu-
rity settings. Moreover, the Newton–Raphson method,
which is considered as our optimization approach, incurs
considerable computation and communication costs on
our protocols. In this work, our main focus was to reduce
the computation cost by reducing the number of opera-
tions using multiple approximations.

Our experiments have been conducted on a single
PC and focused on the computation cost. As it is com-
monly done in the literature [25], we thus provide an
indication on the communication cost as well. To do this,
first, we compute the communication cost for the main

Fig. 3  Efficiency comparison for increasing number of records using
approximation-based algorithm 2

Fig. 4  Efficiency comparison for increasing number of features using
approximation-based algorithm 2

Page 9 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89 	

Table 1  Memory consumption comparison of our proposed protocols using generated synthetic datasets

Records number Feature number OLR BMPC CMPC Accurate BMPC Accurate CMPC

10,000 50 3666 1325 688 1316 888

20,000 70 12,559 1717 1016 1665 1325

30,000 90 22,736 2743 1702 2654 2033

40,000 100 29,110 3775 2337 3622 2672

50,000 100 34,394 4575 2878 4406 3220

50,000 200 34,512 8516 5437 8013 5770

Table 2  A comparison between model parameters β learned using the proposed protocols and ordinary logistic regression protocol
over LBW dataset

β Ordinary LR Accurate BMPC BMPC Accurate CMPC CMPC

3 5 7 3 5 7

β1 0.01574 0.01577 0.01761 0.01580 0.01480 0.01574 0.02214 0.01793 0.01630

β2 0.01127 0.01123 0.01171 0.01061 0.01006 0.01127 0.01534 0.01266 0.01166

β3 0.78666 0.78152 0.67763 0.62479 0.60392 0.78662 0.95081 0.81191 0.77010

β4 −0.47132 −0.46992 −0.48975 −0.44423 −0.42170 −0.47131 −0.63960 −0.52621 −0.48340

β5 −1.32410 −1.31870 −1.24442 −1.13786 −1.08974 −1.32405 −1.68676 −1.41595 −1.32408

β6 −0.75584 −0.75594 −0.86971 −0.78142 −0.73330 −0.75583 −1.09894 −0.88944 −0.80596

β7 −2.20748 −2.20104 −2.48191 −2.23117 −2.09511 −2.20743 −3.15262 −2.56252 −2.33208

β8 −0.96060 −0.95756 −0.99906 −0.90459 −0.85667 −0.96058 −1.30317 −1.07358 −0.98838

β9 −0.24569 −0.24476 −0.21884 −0.20160 −0.19465 −0.24568 −0.30509 −0.25879 −0.24367

Table 3  Accuracy comparison result for real-word datasets with different settings

Dataset Records num Feature num g(x) degree CMPC BMPC OLR

Accuracy AUC​ Accuracy AUC​ Accuracy AUC​

3 71.87% 0.740 71.87% 0.740 71.87% 0.740

PIMA 768 9 5 71.87% 0.741 71.87% 0.740 71.87% 0.740

7 71.87% 0.741 71.87% 0.741 71.87% 0.741

No approx – – – – 71.87% 0.741

3 81.05% 0.842 81.05% 0.846 80% 0.846

PCS 379 10 5 81.05% 0.845 81.05% 0.847 80% 0.847

7 81.05% 0.847 81.05% 0.848 81.05% 0.848

No approx – - – – 81.05% 0.848

3 64.58% 0.519 64.58% 0.519 64.58% 0.519

LBW 189 10 5 64.58% 0.519 64.58% 0.519 64.58% 0.519

7 62.5% 0.519 62.5% 0.517 64.58% 0.519

No approx – – – – 62.5% 0.523

3 73.61% 0.651 73.61% 0.651 73.61% 0.651

UIS 575 9 5 72.91% 0.652 72.91% 0.652 72.91% 0.652

7 72.91% 0.655 73.61% 0.651 72.91% 0.655

No approx – – – – 72.22% 0.656

Page 10 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89

operations we employ, e.g., addition and multiplication,
in both honest majority and dishonest majority settings.
We then calculate the total communication cost for the
entire protocol by aggregating the costs of each individ-
ual operation over several iterations.

In MPC-based protocols, addition operation in both
security settings does not require any communication
between the computation parties. However, multiplica-
tion operation requires multiple communication rounds.
In the honest majority setting and with three computa-
tion parties, Bogdanov [35] explained that each time per-
forming multiplication operation requires exchanging 15
messages between the computation parties. If we con-
sider each message with the size of 32 bits, the communi-
cation cost to perform a multiplication operation will be
420 bits. Besides, executing a logistic regression protocol
once requires (CMPC) requires ten iterations, and mul-
tiplication protocol will be performed in each iteration
between 100 and 300 times.2 Therefore, to compute the
logistic regression model in an honest majority setting
with our protocol, at least 420 Kb data will be exchanged.

Communication costs in the dishonest majority setting
are notably lower (i.e. due to Beaver triples) than the hon-
est majority setting. The multiplication procedure in this
method is split into the offline and online phases. Multi-
plication triples will be generated and distributed during
the offline phase before the computation parties’ inputs
are associated. Therefore, there is no communication cost
in this phase. During the online phase and in the two-
party setting, each computation party sends only two
messages to the other party to perform the multiplication
operation. If we consider each message with the size of
32 bits, 128-bits data need to be exchanged for one-time
multiplication in this setting. Accordingly, the computa-
tion time is 3.75 times less than the honest majority set-
ting. For the whole logistic regression protocol with 10
iterations, at least 125 Kb of data will be exchanged.

Conclusions
There is an increasing interest in applying machine learn-
ing algorithms to sensitive data, such as medical data. In
this paper, we described novel algorithms for implement-
ing secure and private logistic regression training among
distributed parties by using multi-party computation
protocols. We evaluated the performance of our algo-
rithms through experiments on real-world and synthetic
datasets to show the scalability of our solutions, mainly
when they are applied to a dataset with a large number of
records and features. Our experiments also showed that

our algorithms achieve high accuracy while maintaining
a reasonable level of efficiency. As future work, we are
planning to extend our approach to support secure and
efficient multi-class logistic regression.

Abbreviations
LR: Logistic regression; MPC: Multi-party computation; GLORE: Grid binary
logistic regression; SMAC-GLORE: Secure Multi-pArty Computation Grid LOgis-
tic REgression; BMPC: Beaver triple-based multi-party computation; CMPC:
Classical multi-party computation; OLR: Ordinary logistic regression; PIMA:
Pima Indians diabetes dataset; LBW: Low birth weight study; PCS: Prostate
cancer study; UIS: Umaru impact study datasets.

Acknowledgements
We thank Aida Plocco and Sytze Tempel for their contribution to the idea of
this study.

Authors’ contributions
The author ARG contributed the majority of the writing and conducted major
parts of the study. FT wrote a part of this paper, provided detailed edits and
critical suggestions. XJ provided the motivation for this work and helpful com-
ments. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The data used in the present study are publicly and freely available and have
been downloaded from public data repositories. All datasets and codes used
in this study are freely available at: https://​github.​com/​alire​zagha​vamip​our/​
pplr_​ss

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 University of Groningen, Nijenborgh 9, Groningen, Netherlands. 2 UTHealth
School of Biomedical Informatics, The University of Texas, Houston, USA.

Received: 26 April 2021 Accepted: 22 February 2022

References
	1.	 Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regression.

New York: Wiley; 2013.
	2.	 Boxwala AA, Kim J, Grillo JM, Ohno-Machado L. Using statistical and

machine learning to help institutions detect suspicious access to elec-
tronic health records. J Am Med Inform Assoc. 2011;18(4):498–505.

	3.	 Riley RD, Ensor J, Snell KI, Harrell FE, Martin GP, Reitsma JB, Moons KG, Col-
lins G, van Meden M. Calculating the sample size required for developing
a clinical prediction model. Bmj 2020;368.

	4.	 Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving
genomic diagnoses without revealing patient genomes. Science.
2017;357(6352):692–5.

	5.	 Wu Y, Jiang X, Kim J, Ohno-Machado L. Grid Binary LOgistic REgression
(GLORE): building shared models without sharing data. J Am Med Inform
Assoc. 2012;19(5):758–764. https://​doi.​org/​10.​1136/​amiaj​nl-​2012-​000862.

2  The exact numbers of iterations and multiplications depend on the degree of
least-squares Sigmoid approximation and the choice of a good start value for
the inversion operations.

https://github.com/alirezaghavamipour/pplr_ss
https://github.com/alirezaghavamipour/pplr_ss
https://doi.org/10.1136/amiajnl-2012-000862

Page 11 of 11Ghavamipour et al. BMC Medical Informatics and Decision Making (2022) 22:89 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	6.	 Shi H, Jiang C, Dai W, Jiang X, Tang Y, Ohno-Machado L, Wang S. Secure
multi-pArty computation grid LOgistic REgression (SMAC-GLORE). BMC
Med Inform Decis Mak. 2016;16(3):89.

	7.	 Xie W, Wang Y, Boker SM, Brown DE. Privlogit: efficient privacy-preserving
logistic regression by tailoring numerical optimizers. 2016. arXiv:​1611.​
01170.

	8.	 Mohassel P, Zhang Y. Secureml: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE symposium on security and privacy (SP).
IEEE. 2017, pp. 19–38.

	9.	 Beaver D. Commodity-based cryptography. In: Proceedings of the
twenty-ninth annual ACM symposium on theory of computing. 1997, pp.
446–55.

	10.	 De Cock M, Dowsley R, Horst C, Katti R, Nascimento AC, Poon W-S, Truex
S. Efficient and private scoring of decision trees, support vector machines
and logistic regression models based on pre-computation. IEEE Trans
Dependable Secure Comput. 2017;16(2):217–30.

	11.	 Gentry C, Boneh D. A fully homomorphic encryption scheme, vol. 20.
Stanford: Stanford University; 2009.

	12.	 Yoo JS, Hwang JH, Song BK, Yoon JW. A bitwise logistic regression
using binary approximation and real number division in homomorphic
encryption scheme. In: International conference on information security
practice and experience. Springer. 2019, pp. 20–40.

	13.	 MLD R, Fienberg S, Nardi Y. Secure multiparty linear and logistic regres-
sion based on homomorphic encryption. 2020. https://​www.​cs.​cmu.​edu.

	14.	 Carpov S, Gama N, Georgieva M, Troncoso-Pastoriza JR. Privacy-preserv-
ing semi-parallel logistic regression training with fully homomorphic
encryption. BMC Med Genomics. 2020;13(7):1–10.

	15.	 Kim M, Song Y, Wang S, Xia Y, Jiang X. Secure logistic regression based
on homomorphic encryption: design and evaluation. JMIR Med Inform.
2018;6(2):19.

	16.	 Han K, Hong S, Cheon JH, Park D. Logistic regression on homomorphic
encrypted data at scale. In: Proceedings of the AAAI conference on
artificial intelligence, vol. 33. 2019. pp. 9466–71.

	17.	 Han K, Hong S, Cheon J, Park D. Efficient logistic regression on large
encrypted data. IACR Cryptol. ePrint Arch. 2018; Query date: 2020-06-24
08:59:23.

	18.	 Djonatan P. Privacy-preserving analytics: secure logistic regression. 2019.
Query date: 2020-06-24 08:59:23. https://​dr.​ntu.​edu.​sg/​handle/​10356/​
77126.

	19.	 Du W, Li A, Li Q. Privacy-preserving multiparty learning for logistic regres-
sion. In: International conference on security and privacy in communica-
tion systems. Springer. 2018, pp. 549–68.

	20.	 Chaudhuri K, Monteleoni C. Privacy-preserving logistic regression. In:
Advances in neural information processing systems. 2009, pp. 289–96.

	21.	 El Emam K, Samet S, Arbuckle L, Tamblyn R, Earle C, Kantarcioglu M. A
secure distributed logistic regression protocol for the detection of rare
adverse drug events. J Am Med Inform Assoc. 2013;20(3):453–61.

	22.	 Kim M, Lee J, Ohno-Machado L, Jiang X. Secure and differentially private
logistic regression for horizontally distributed data. IEEE Trans Inf Foren-
sics Secur. 2019;15:695–710.

	23.	 Bogdanov D, Laur S, Willemson J. Sharemind: a framework for fast
privacy-preserving computations. In: European symposium on research
in computer security. Springer. 2008, pp. 192–206.

	24.	 Randmets J. Programming languages for secure multi-party computation
application development. 2017.

	25.	 Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure
multi-party computation for data mining applications. Int J Inf Secur.
2012;11(6):403–18.

	26.	 Beaver D. Efficient multiparty protocols using circuit randomization. In:
Annual international cryptology conference. Springer. 1991, pp. 420–32.

	27.	 Nardi Y, Fienberg SE, Hall RJ. Achieving both valid and secure logistic
regression analysis on aggregated data from different private sources. J
Priv Confid 2012;4(1).

	28.	 Agresti A. Categorical data analysis. 2003, p. 482.
	29.	 Böhning D. The lower bound method in probit regression. Comput Stat

Data Anal. 1999;30(1):13–7.
	30.	 Dua D, Graff C. UCI machine learning repository. 2017. http://​archi​ve.​ics.​

uci.​edu/​ml.
	31.	 lbw: Low Birth Weight study data. 2019. https://​rdrr.​io/​rforge/​Logis​ticDx/​

man/​lbw.​html.

	32.	 pcs: Prostate Cancer Study data. 2019. https://​rdrr.​io/​rforge/​Logis​ticDx/​
man/​pcs.​html.

	33.	 uis: UMARU IMPACT Study data. 2019. https://​rdrr.​io/​rforge/​Logis​ticDx/​
man/​uis.​html.

	34.	 memory-profiler. 2021. https://​pypi.​org/​proje​ct/​memory-​profi​ler/.
	35.	 Bogdanov D. Sharemind: programmable secure computations with

practical applications. Ph.D. Thesis, Tartu University. 2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1611.01170
http://arxiv.org/abs/1611.01170
https://www.cs.cmu.edu
https://dr.ntu.edu.sg/handle/10356/77126
https://dr.ntu.edu.sg/handle/10356/77126
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html
https://rdrr.io/rforge/LogisticDx/man/uis.html
https://rdrr.io/rforge/LogisticDx/man/uis.html
https://pypi.org/project/memory-profiler/

	Privacy-preserving logistic regression with secret sharing
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Related work
	Preliminaries
	System model
	Secret sharing
	Addition and multiplication
	Matrix inversion
	Logistic regression

	Methods
	Estimating model coefficients
	Gradient
	Hessian
	Privacy-preserving logistic regression training

	Results
	Implementation details
	Efficiency
	Accuracy
	Communication cost

	Conclusions
	Acknowledgements
	References

